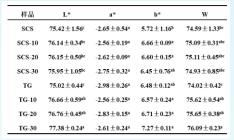
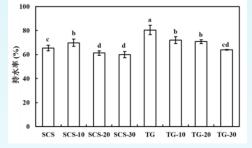


王瑜a, 孙乐常a,b, 刘光明a,b, 曹敏杰a,b* a集美大学食品与生物工程学院,福建厦门361021 b水产品深加工技术国家地方联合工程研究中心,集美大学,厦门 361021

摘要

研究谷氨酰胺转氨酶(TGase)对二段加热与高温加热(121°C加热10 min、20 min、 30 min) 鲢鱼鱼糜凝胶特性的影响。结果表明,在121°C条件下,鱼糜凝胶强度随着加热 时间的延长明显下降,显著低于二段加热。质构结果表明,1% TGase能改善鱼糜的凝胶 特性,显著提高凝胶的强度、硬度、咀嚼性和保水性。SDS-PAGE的结果表明,肌球蛋 白重链和肌动蛋白在高温的作用下逐渐降解。在添加TGase后, 肌球蛋白重链逐渐消失, 这可能是由于TGase促进蛋白质的交联形成了高分子聚合物。扫描电镜结果显示,高温 使蛋白凝胶网络的微观结构更加松散,而TGase的加入有助于形成更致密的聚集物。本 研究的结果为高压加热制备常温即食鱼糜产品提供了理论依据。

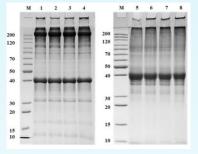
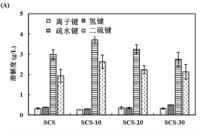
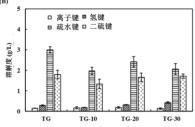

结果



样品	硬度(g)	粘性 (g*sec)	弹性	咀嚼性 (g)	粘结性	回弹性
SCS	$210.01\!\pm\!30.76^{e}$	$\text{-}262.91 \!\pm\! 77.19^{d}$	0.92 ± 0.06^{ab}	93.71 ± 15.96^{de}	0.45 ± 0.05^c	$0.15 \!\pm\! 0.04^{ab}$
SCS-10	$202.19\!\pm\!28.67^{ef}$	$-289.63\pm87.76^{\mathrm{e}}$	0.90 ± 0.05^b	$95.05\!\pm\!14.27^{de}$	0.52 ± 0.03^{ab}	0.16 ± 0.03^{ab}
SCS-20	$200.03\!\pm\!31.14^{ef}$	$\text{-}310.49 \!\pm\! 69.32^{\mathrm{f}}$	0.90 ± 0.02^b	98.84 ± 14.54^d	0.53 ± 0.04^{ab}	0.16 ± 0.04^{ab}
SCS-30	187.55 ± 19.55^f	-154.36 ± 74.35^b	0.89 ± 0.07^b	88.54 ± 13.56^{e}	0.51 ± 0.04^{ab}	0.13 ± 0.04^b
TG	556.42 ± 25.15^a	-118.26 ± 47.22^a	0.95 ± 0.07^a	$241.29\!\pm\!27.69^a$	0.49 ± 0.03^{bc}	0.17 ± 0.04^a
TG-10	305.61 ± 39.71^b	$\text{-}269.45 \!\pm\! 17.15^{d}$	0.92 ± 0.02^{ab}	$130.61\!\pm\!22.93^{bc}$	0.56 ± 0.01^a	0.14 ± 0.01^{ab}
TG-20	284.67±34.71°	$\text{-}217.13 \!\pm\! 58.66^{c}$	0.90 ± 0.08^b	$134.68\!\pm\!2.11^b$	0.53 ± 0.03^{ab}	0.14 ± 0.01^{ab}
TG-30	$252.76\!\pm\!8.61^d$	$\text{-}325.17 \!\pm\! 85.07^{\mathrm{f}}$	0.90 ± 0.01^b	123.75±9.44°	0.53 ± 0.02^{ab}	0.13 ± 0.04^b

图1 不同加热方式对鱼糜凝胶强度的影响

图2 不同加热方式对鱼糜TPA的影响

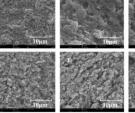

图3 不同加热方式对鱼糜白度的影响

图4 不同加热方式对鱼糜保水性能的影响

图5 不同的鱼糜加热方法的SDS-PAGE

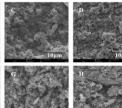


图6 不同加热方式对鱼糜(A)空白组,(B)1% TG化学键组成的影响

图7 不同加热方式的鱼糜SEM分析

结论

本文研究了TGase对高压加热杀菌鲢鱼胶凝性能的影响。高温处理导致鱼糜凝胶的 凝胶结构破坏,导致鱼糜凝胶的质构恶化。TGase能够催化非二硫键共价交联形成致密 稳定的三维蛋白质结构,减轻了高温处理对凝胶网络的破坏,提高了鱼糜凝胶的热稳 定性。本研究为常温下即食鱼糜产品的研发提供了一些新思路。