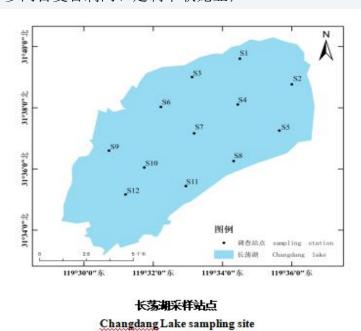


长荡湖鱼类群落结构多样性研究及其与环境因子的关系

顾佳林 1, 匡箴 2, 徐东坡 1,2


- 1. 南京农业大学无锡渔业学院, 无锡 214081
- 2. 中国水产科学研究院淡水渔业研究中心 农业农村部长江下游渔业资源环境科学观测实验站, 江苏 无锡 214081;

Introduction

长荡湖系太湖分化湖泊之一,属太湖鱼类区系,历史上湖水水源充足、水质清新无污染,水草、螺、鱼类等水生生物资源丰富。上世纪末到本世纪前期(1978-2004),长荡湖湖区围网养殖十分发达,其中90%以上的养殖面积为河蟹区域。此外,经济的快速发展导致生活、工业、农业等污染,致使长荡湖自然生态系统遭受到严重破坏,水体富营养化问题突出,水生生物资源衰减明显。通过2009年、2016年连续靠站围网整治工程,湖区内源污染得到一定控制,生态环境得到了一定的改善,但鱼类资源面临的压力依然巨大,需进一步保护。因此,为了推动长荡湖渔业向生态渔业发展,急需了解围网整治后长荡湖的渔业资源状态,以及渔业资源与环境因子的关系。

Materials and methods

- ▶调查时间: 2016年12月、2017年7月、11月及2018年4月;
- ▶地点:长荡湖;
- ▶网具: 多网目复合刺网、定制串联笼壶;

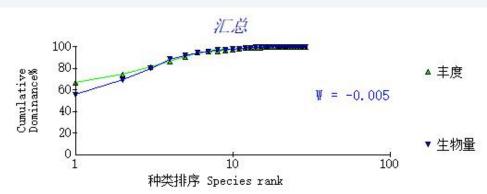
Results

▶如图所示,长荡湖四个季节主要鱼类相对重要性指数

长荡湖主要鱼类相对重要性指数 Index of relative importance (IRI) of the main fishes in the Changdang Lake

种类	春季	夏季	秋季	冬季	总计
Species	Spring	Summer	Autumn	Winter	Sum
智 Hemiculter leucisculus	-	-	4.2	214.4	17.11
达氏鲌 <u>Culter dabryi</u>	2086.5	898.9	367.8	522.8	771.63
刀鲚 <u>Coilia nasus</u>	7682.7	8396.6	8775.7	5740.9	7437.01
红鳍原鲌 Cultrichthys erythropterus	920.5	545.4	352.6	501.3	528.97
鲫 Carassius auratus	2784.0	1734.8	918.4	987.1	1355.79
鲢 Hypophthalmichthys molitrix	1824.7	3049.5	3918.8	7996.9	4565.46
翘嘴鲌 Culter alburnus	88.6	40.9	178.5	68.0	72.28
似鳊 Pseudobrama simoni	18.7	0.4	71.7	112.2	32.7
似鱎 Toxabramis swinhonis	34.9	777.5	317.6	1431.9	657.28
鏞 Aristichthys nobilis	745.8	1067.2	899.2	720.7	854.61

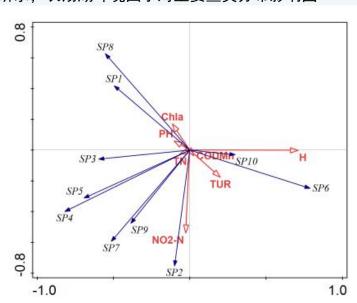
>如图所示,长荡湖多样性指数季节变化


长荡湖鱼类多样性指数季节变化

Seasonal variation of fish diversity indexes in the Changdang Lake

季节 season	多样性指数(H)	均匀度指数(J)	丰富度指数(R)
春季 spring	1.291 a	0.1913 ^c	2.346 ^d
夏季 summer	1.712 ab	0.2217°	2.961 ^d
秋季 autumn	1.056 b	0.1306 ^c	2.610 ^d
冬季 winter	1.208 a	0.1673¢	2.210e

注:同列数据肩标相同小写字母表示差异不显著(P>0.05),不同小写字母表示差异显著(P<0.05)。R 为 Margalef 丰富度指数,H'为基于个体数量的 Shannon-Wiener 多样性指数,J'为基于个体数量的 Pielou 均匀度指数。


▶ 如图所示, 长荡湖鱼类群落结构 ABC 曲线及 W 统计值

长荡湖鱼类群落 ABC 曲线及 W 统计值

ABC curves and W statistics of fish communities in Changdang Lake in four seasons

▶如图所示, 长荡湖环境因子对主要鱼类分布影响图

注: SP1 鱟、SP2 达氏鲌、SP3 刀鲚、SP4 红鳍原鲌、SP5 鲫、SP6 鲢、SP7 翘嘴鲌、SP8 似鳊、SP9似鱎、SP10 鱄

基于 DCA 分析的环境因子对主要鱼类分布影响图

Influence of environmental factors on the distribution of major fish based on DCA analysis

Conclusions

- (1) 经鉴定共采集鱼类 29 种,隶属于 4 目 7 科 24 属。其中数量优势种为 鳀科刀鲚,优势度为 66.8%,质量优势种为鲤科鲢,优势度为 55.8%。沿岸 带鱼类数量较多,但重量较低,而沿湖中心线站点鱼类数量较少,种类较多, 显示中心站点多为大型鱼类。各样点间多样性指数秋季与春季、冬季之间差 异显著,其他季节之间差异不显著,且数值偏低,反应了长荡湖全湖水域鱼 类资源衰替较为严重的现状。长荡湖鱼类生物量和丰度曲线有不同程度的交 叉重叠,W 值为- 0.005,故长荡湖鱼类群落处于中度干扰状态。
- (2)水深、亚硝酸氮浓度、高锰酸盐指数、叶绿素含量、浊度、PH 和总氮含量为影响长荡湖鱼类群落主要种的 7 个关键环境因子。浊度、水深和高锰酸盐指数为影响鲢鳙的主要环境因子,叶绿素含量和 PH 为影响鰲和似鳊的主要环境因子,影响达氏鲌、刀鲚、红鳍原鲌、鲢、翘嘴鲌、似鱎的主要环境因子是亚硝态氮浓度和总氮含量。