团头鲂"浦江2号"连续两代雌核发育群体的微卫星遗传结构分析

张彦锐123,李宝玉123,郑国栋123,邹曙明123

(1. 上海海洋大学农村农业部团头鲂遗传育种中心,上海 201306; 2. 上海海洋大学农村农业部淡水水产种质资源重点实验室,上海 201306; 3. 上海海洋大学水产科学国家级实验教学示范中心,上海 201306)

介绍

微卫星是一种共显性,随机性和多态性的分子标记,具有多态性好、杂合率高、共显性遗传等特点,常常比较群体之间的遗传多样性差异揭示基因组的总体特征。

团头鲂是我国重要的草食性经济鱼类,养殖过程中过度追求生产、忽视良种选育,其出现生长性能、抗病以及抗逆能力下降等问题。团头鲂性成熟时间长,传统选育方式耗时费力,然而雌核发育技术能提高群体遗传纯合度。目前,培育出的团头鲂"浦江2号"新品种在生长和耐低氧方面有着突出的优势。为了更好的固定这些优良性状,本试验以团头鲂"浦江2号"作为对照,利用20个多态性微卫星比较研究"浦江2号"雌核发育一代群体(Meio-G1)和二代群体(Meio-G2)间遗传结构及基因座位的纯合度,分析群体间的遗传多样性。

过度养殖的现状

团头鲂"浦江2号"

材料与方法

1.实验材料

本试验实验用鱼均源于上海海洋大学农业部团头鲂遗传育种中心,其中采用了团头鲂"浦江2号"群体、雌核发育一代群体(Meio-G1)和雌核发育二代群体(Meio-G2)作为研究对象进行实验。

2.实验方法

剪取相应群体的鳍条,提取全基因组DNA后,利用筛选获得的20对微卫星位点引物,根据聚丙烯酰胺凝胶电泳谱带进行基因分型。SSR位点及引物信息见表 1。

3.数据处理

使用PopGene(Version3.2)软件统计微卫星数据分析,根据Botstein公式计算Hardy-Weinberg遗传偏离指数(D),软件分析PIC-CLC位点的多态信息含量(PIC),并根据群体间遗传距离按照UPGMA法构建3个群体的聚类关系图。

表 1 微卫星引物特征
Tab. 1 Characteristics of microsatellite primers

序号	位点	重复序列	等位基因大小/bp	退火温度/℃	引物序列(5'- 3')
No.	locus	repeat motif	number of alleles	Tm	primer sequence (5'-3')
					F: TTTCTGCCACTGGAGACC
1	Mam-EST5	(TG) ₁₅	281~351	59.0	R: TTTGATGATGATTAGAGGAGG
					F: TCGTGCGAAGTAAACAAG
2	Mam-EST12	$(TCTT)_{13}$	205~259	54.0	R: CAGGCAATAATAACAAAACC
		(70) (10)	225 252		F: CGAGTAAAATCCCAGAGG
3	Mam-EST18	$(TC)_{10}(AC)_{18}$	206~258	54.5	R: ATATGCCATTTTCTCACTTC
	Maria Porta 7	/T.C.)	147216	62.0	F: CACAAACCATAAACACAG
4	Mam-EST37	(TG) ₈	147~216	62.0	R: AATGCCCATAAAACACAC
5	Mam-EST45	(A TCT)	202~,200	50.5	F: AGTATAAGTTGAGTGGGTG
5	WIGH-ES1 43	(ATCT) ₂₅	282~380	30.3	R: TAAAGGGAAATTCTGGT
6	Mam-EST46	(AC) ₁₀	206~228	50.0	F: ACGGTGTCAGTTCAGCA
0	WIGH-E3140	$(AC)_{19}$	200 228	30.0	R: CTCCCACGACAGAAAGA
7	Man-EST61	(AC)12	110~170	55.0	F: AATCCAGTCAGAGTCATC
,	WIGH-E3101	(AC)12	110 - 170	33.0	R: AGTCGTTTGTGCAAGTAA
8	Mam-EST85	(AC) ₁₂	206~298	57.0	F: CTTACAGACTCCGACAGG
0	W.C.m-2.51 05	(AC) ₁₂	200 - 298	37.0	R: ATCCACGACTTCCAGAAC
9	Mam-EST99	(CT) ₂₀	208~256	57.0	F: GCGTATGAACGTCAGAGC
	W.C. 1251 33	(C1)20	200 230	57.0	R: TGTTGGATTATTATGGGATG
10	Mam-EST110	(AC) ₁₃	196~234	62.0	F: CTATTTACAGTTTCATGCTTTCCTC
10	1714m-1551 1 1 0	(AC)[3	190 234	02.0	R: ATCCCGTCCGCCGCTTACT
11	Mam-EST158	(CT) ₁₆	117~151	60.0	F: GGTACTGTTTGTGCTGGGC
- 11	171411-151150	(01)16	117 131	00.0	R: CTGCTCACTCAACTTATTGTAGGTC
12	Mam-EST841	(ACGA) ₁₄	277~307	54.5	F: ATTGGTCCAGTCTGTTGT
	1111111 201071	(110 011)[4	2., 30,	31.3	R: TGTATCTTGCACGCTCTA
13	Me.Am-1	(AGAAG) ₅	210~275	52.0	F: TGTGGATGCCCTGAGTGAA
		(11011110))		32.0	R: AGAGGCAGAAACAACAGA
14	Me.Am-15	(CATT) ₅	175~200	56.0	F: AGGCGAAAGAAACACTGTGT
		(01111)3	2.2	2 3.3	R: AATGTGTTCGTGTGGAGAG
15	TTF1	(CA) ₂₁	273~335	55.9	F: TGGAGATGAAAGCTGAAGGAA
		()21			R: ATGCACGAACTGCCACATAA
16	TTF2	TF2 (CA) ₅ (CT) ₂₁	196~228	55.6	F: AAACAGCTGCTACCCTTGGA
				55.0	R: TTTGCCAGAAGAGCAAATCA
17	TTF3	(TC) ₂₇	224~279	56.4	F: AAGACGCCACGGAAACTTTA
		(= -72)			R: CTGACCGGATAGCAAAGTGA
18	TTF4	(CA) ₁₄	157~289	60.5	F: GACTGGAGTCGTCAGGCTTC
		V/14	15, 205	00.0	R: TGCCCCACATTGTTAGACTG
19	TTF6	(GA) ₁₃	182~218	60.5	F: GGCAGGTCAGGCACATTTAT
		, ,,,,			R: TCTCTACCTCACATCTCTCATTCT
20	TTF8	(GT) ₁₈	162~224	60.5	F: GGGGAAATAAAGGGAGAAAGTG
					R: TTTCTCCTGATCCGTTGACC

结果与讨论

1. 三个群体的遗传多样性参数

表 2 三个群体的遗传多样性参数

	等位基因数≠ Na÷		有效等位基因数≠ Net-i		观测杂合度∈ H。∈		多态信息含量← PIC←			纯合度←					
位点← locus⊖										H←l					
	对照组↩	Meio-G1∉	Meio-G2∉	对照组↩	Meio-G1∉	Meio-G2∉	对照组↩	Meio-G1∉	Meio-G2∉	对照组↩	Meio-G1∉	Meio-G2∉	对照组↩	Meio-G1∉	Meio-G2∉
Mam-EST5↔	5.00004	4.0000↩	3.000041	3.9046↩	2.5605↩	1.5101↩	0.9333↔	0.4667∉	0.2000₽	0.6995⊖	0.5406€	0.3092⊬	0.0667∉	0.53334	0.8000€
Mam-EST12€	5.0000₽	3.0000↔	3.0000↩	3.9823₽	2.3591∉	1.5666€	0.7333₽	0.2667₽	0.1333€	0.7074€	0.5065∉	0.3311↩	0.2667∉	0.7333↩	0.8667⊬
Mam-EST18₽	5.0000₽	4.0000€	3.0000₽	3.7113↩	2.5460∉	1.6838₽	0.9000₽	0.7333₽	0.3667∉	0.6865∉	0.5367∉	0.3703∉	0.1000€	0.2667∉	0.6333↩
Mam-EST37∉	5.0000₽	3.0000↔	3.0000₽	2.5899⊬	1.9088∉	1.7946⊬	1.0000₽	0.4333₽	0.1667∉	0.5379∉	0.3902∉	0.3585₽	0.0000₽	0.5667₽	0.8333₽
Mam-EST45₽	5.0000₽	4.0000€	3.0000₽	3.6961∉	2.2930₽	1.9088₽	0.7000∉	0.3000€	0.1667∉	0.6875∉	0.4763∉	0.4220₽	0.3000€	0.7000↩	0.8333₽
Mam-EST46₽	4.0000↔	3.0000↔	3.0000∉	2.2305⊬	1.4551∉	1.6028₽	0.5333₽	0.2333₽	0.1333₽	0.4976⊬	0.2856₽	0.3335€	0.4667∉	0.7667∉	0.8667₽
Mam-EST61∉	3.0000↩	3.0000↔	3.0000₽	2.5388€	2.0955∉	1.9231∉	0.6667∉	0.5333₽	0.2000₽	0.5380₽	0.4601∉	0.4122∉	0.3333€	0.4667∉	0.8000€
Mam-EST85₽	4.0000↔	3.0000↩	3.0000∉	3.3333€	1.9912∉	1.6245₽	0.80004	0.2667∉	0.2000€	0.64544	0.4450€	0.3514∉	0.2000€	0.7333∉	0.8000€
Mam-EST99∉	3.0000↔	3.0000↔	3.0000∉	2.4862∉	2.1327∉	1.7527↩	0.9000↔	0.3667∉	0.0667∉	0.5258∉	0.4745∉	0.3505⊬	0.1000€	0.63334	0.9333↩
Mam-EST110⊕	3.0000↔	3.0000↩	3.0000∉	2.6432€	1.9802∉	1.6202↩	0.7333↩	0.3667∉	0.1333€	0.5466⊕	0.4398∉	0.3212∉	0.2667∉	0.6333∉	0.8667∉
Mam-EST158∉	3.0000↔	3.0000↔	2.0000€	2.4194€	2.1327∉	1.9651∉	0.7000€	0.3333€	0.1333€	0.5094₽	0.4211€	0.3705↩	0.3000€	0.6667∉	0.8667∉
Mam-EST841∉	3.0000↔	3.0000↔	2.0000₽	2.2613∉	1.9417∉	1.8349€	0.4667∉	0.3667∉	0.1000€	0.4778₽	0.3824	0.3515₽	0.5333₽	0.63334	0.9000€
<u>Ms.4m</u> -I ←	4.0000↔	2.0000⊕	2.0000∉	2.5605⊬	1.8672∉	1.8349↔	0.7333↔	0.4667∉	0.1667∉	0.5406⊕	0.3566∉	0.3515∉	0.2667∉	0.53334	0.8333↔
<u>Me.4m</u> -15⊖	5.00004	4.0000€	3.0000∉1	3.9735∉	2.7149∉	2.0478₽	0.8000€	0.3667∉	0.2667∉	0.7069∉	0.5593∉	0.4406€	0.2000€	0.6333∉	0.7333↩
$TTFI \leftarrow$	5.0000↔	4.0000↔	3.0000₽	3.4156€	2.6946	2.0385↩	0.9667∉	0.4667∉	0.3000₽	0.6519₽	0.5569€	0.4505⊬	0.0333€	0.5333€	0.7000↩
TTF2←	5.0000↩	3.0000↔	3.0000₽	3.9735€	2.5974₽	1.5748₽	0.8000₽	0.3667∉	0.2000₽	0.7069∉	0.5453∉	0.3095⊬	0.2000₽	0.6333∉	0.8000€
TTF3⊕	5.0000↔	3.0000↔	3.0000₽	3.4156€	2.6987∉	2.1028₽	0.9667∉	0.5000€	0.2000₽	0.6519⊬	0.5523₽	0.4403∉	0.0333€	0.5000€	0.8000€
TTF4⊕	5.0000↔	4.0000↩	3.0000₽	4.1002∉	2.4096↩	1.5101∂	1.0000↩	0.5000₽	0.0667∉	0.7166⊖	0.5214€	0.3092∉	0.0000€	0.5000↩	0.9333₽
TTF6€	4.0000↔	3.0000↔	2.0000⊬	3.3333↔	1.8672∉	1.5139↩	0.8000⊕	0.2667∉	0.1000€	0.6454₽	0.4188∉	0.2819⊬	0.2000€	0.7333€	0.9000€
TTF8÷	5.0000₽	4.0000€	3.0000₽	4.1002∉	2.5035∉	1.7839∉	1.0000₽	0.5333₽	0.1667∉	0.7166⊕	0.5322€	0.3906⊬	0.0000€	0.4667∉	0.8333€
平均 Mean⊕	4.3000€	3.3000↔	2.8000€	3.2300⊬	2.2400⊬	1.7600⊬	0.8067∉	0.4067∉	0.1733∉	0.6147∉	0.4435∉	0.3433∉	0.2035∉	0.6000↔	0.8263⊬

2. Hardy-Weinberg 平衡遗传偏离指数

表 3 Hardy-Weinberg 平衡的卡方检验概率值(P)与遗传偏离指数(D)

Tab. 3 Hardy-Weinberg equilibrium Chi-square test probability value(P)and genetic deviation index(D)

位点		遗传偏离指数 D		偏离 Hardy-Winberg 平衡的显著性 p				
Locus	对照组	Meio-G1	Meio-G2	对照组	Meio-G1	Meio-G2		
Mam-EST5	0.2337	-0.2470	-0.4178	0.0001**	0.0434	0.0018*		
Mam-EST12	-0.0372	-0.5448	-0.6376	0.0141	0.0001**	0.0000**		
Mam-EST18	0.2115	0.1875	-0.1121	0.0008*	0.3541	0.4017		
Mam-EST37	0.6018	-0.1051	-0.6298	0.0000**	0.0000**	0.0018*		
Mam-EST45	-0.0563	-0.4768	-0.6557	0.0000**	0.0084	0.0000*		
Mam-EST46	-0.0494	-0.2666	-0.6515	0.2184	0.0867	0.0000*		
Mam-EST61	0.0816	0.0032	-0.5902	0.0654	0.2154	0.0000*		
Mam-EST85	0.1238	-0.4731	-0.4885	0.0008^{*}	0.0007*	0.0001*		
Mam-EST99	0.4805	-0.3211	-0.8473	0.0011*	0.0181	0.0000*		
Mam-EST110	0.1599	-0.2716	-0.6576	0.0028	0.0023*	0.0005		
Mam-EST158	0.1733	-0.3829	-0.7331	0.0023	0.0550	0.0000*		
Mam-EST841	-0.1772	-0.2565	-0.7839	0.1376	0.3902	0.0000*		
Me.Am-I	0.1831	-0.0119	-0.6397	0.0000**	0.9467	0.0003*		
Me.Am-15	0.0512	-0.4292	-0.4874	0.0001**	0.0065	0.0014		
TTFI	0.3441	-0.2702	-0.4210	0.0003**	0.0000*	0.0028		
TTF2	0.0512	-0.4137	-0.4612	0.0000**	0.0009^{+}	0.0342		
TTF3	0.3441	-0.2189	-0.6250	0.0003**	0.1064	0.0000*		
TTF4	0.3006	-0.1595	-0.8058	0.0000**	0.1857	0.0000*		
TTF6	0.1238	-0.4353	-0.7103	0.0008°	0.0017*	0.0000*		
TTF8	0.3006	-0.1267	-0.6270	0.0000**	0.1960	0.0000*		
平均 Mean	0.1655	-0.2681	-0.5977	0.0734	0.2014	0.1462		

注: "*"表示经邦弗朗尼校正后显著偏离哈迪-温伯格平衡(P<0.05), "**"表示极显著偏离(P<0.01).

Note: "*" indicates significant departure from Hardy-Weinberg equilibrium after Bonferroni correction $(P \le 0.05)$."**" indicates extremely significant deviations $(P \le 0.01)$.

3.聚类分析

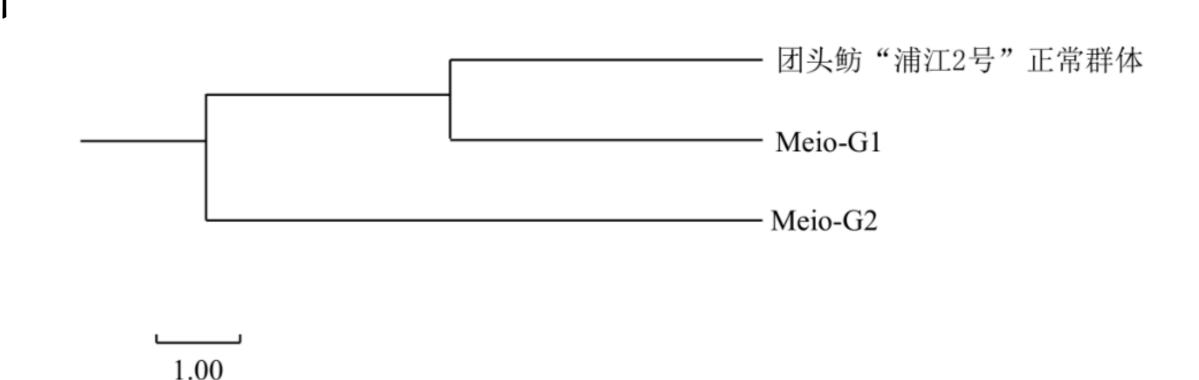


图1三个群体的UPGMA聚类图

Fig.1 Dendrogram of relationships among M. amblycephala populations using UPGMA method of clustering

结论

- **1.**根据*Na、Ho、He和PIC*等遗传参数可得出,团头鲂"浦江2号"正常群体的遗传多样性最高,Meio-G1群体次之,Meio-G2群体的遗传多样性最低。
- **2.**由Hardy-Weinberg 平衡遗传偏离指数分析,正常群体中表现为杂合子过剩; Meio-G1和 Meio-G2群体的表现为杂合子缺失。
- 3.聚类分析结果所示,三个群体聚类分为明显的两支,正常群体与Meio-G1共同汇聚成为一支,Meio-G2单独成为一支。