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Introduction

High alkalinity stress was considered as a major risk factor for aquatic animals surviving in saline-alkaline water. However, few information
exists on the effects of alkalinity stress in crustacean species or how this stressor affects the gill. The present study evaluated the effect of
alkalinity stress in Exopalaemon carinicauda to determine changes in homeostasis and gill microstructure, and explore the heterogeneity
response of gill cells by single-cell RNA sequencing (scRNA-seq). It was shown that high alkalinity stress resulted in a remarkable increased in the
hemolymph osmolality and pH. For the gills, the pillar cells showed more symmetrical arrangement and longer lateral flanges, and the
nephrocytes showed larger vacuoles after alkalinity stress compared with the control group. SCRNA-seq results showec
leaded to decreased proportion of pillar cells and increased proportion of nephrocytes significantly. The differentially expressed genes (DEGS)
related to ion transport, especially acid-base regulation, such as V(H*)-ATPases and car
up-regulated in nephrocytes. Furthermore, pseudotime analysis showed that some ne
in response to alkalinity exposure. Notedly, the positive signals of carbonic anhydrase were obviously observed in the nephrocytes after alkalinity
stress. These results indicated that the alkalinity stress inhibited the ion transport function of pillar cells, but induced the active role of
nephrocytes in alkalinity adaptation. Collectively, our results provided the new insight into the cellular and molecular mechanism behind the

@verse effects of saline-alkaline water and the saline-alkaline adaption mechanism in crustaceans.
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Figure 1. Histological and cytological features of gill in E.
carinicauda. The gill filament surface in the control
group (A) and alkalinity group (B). The gill histopathology
in the control group(C) and alkalinity group (D).
Ultrastructure of transverse sections of gill lamellae in
the control group (E) and alkalinity group (F). The CAc
location in the pillar cells of control group (G) and
alkalinity group (F).
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Figure 3. Overview of the gill cell clusters in E. carinicauda.
(A) t-SNE plots showing expression of marker genes in cluster
0-5. The gene expression level is color coded. (B) FISH image
showing the location of marker genes in different cell types
in the gill filament.
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Figure 2. SCRNA-seq analysis of gill cells in E. carinicauda. (A) Overall
workflow for cell sorting and single-cell data analyses. (B) The t-SNE
nonlinear clustering of gill cells in E. carinicauda. (C) Number of cells
in each cluster and their proportional distribution in the total gill
dataset. (D) Top 5 DEGs (x axis) identified in each cluster (y axis). Dot
size represents the fraction of cells in the cluster that express the
gene; intensity indicates the mean expression (Z-score) in expressing
cells, relative to other clusters.
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Figure 4. Gene expression characteristics of pillar cells and
nephrocytes after alkalinity stress. (A) Pie charts of 8 clusters
identified from gill in control and alkalinity stress group by t-
SNE analysis. UD1: Undefined cell 1, UD2: Undefined cell 2. (B)
Down- and up-regulated DEG numbers in each cell type of gills
after alkalinity stress. (C) Venn diagram analysis of DEGs in
pillar cells and nephrocytes after alkalinity stress. (D) GO
enrichment of DEGs in pillar cells and nephrocytes. (E) KEGG
enrichment of DEGs in pillar cells and nephrocytes.
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Figure 5. Pseudotime analysis of nephrocytes. (A) Pseudotime
analysis of DEGs in nephrocytes. (B) GO analysis of DEGs in
Branch 2. (C) Changes of CAc (white arrow) and NAR (yellow
arrow) in the nephrocytes of gill axis after alkalinity stress.
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Figure 6. Hypothetical model of ion transport in gill cells of E. carinicauda after alkalinity stress according to the previous
study with modification. The expression of ion transport related genes in the green box are down-regulated and the
expression of ion transport related genes in the red box are up-regulated.
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