CRISPR/Cas9-induced LEAP2 and GHSR1a knockout mutant zebrafish displayed abnormal growth and impaired lipid metabolism

Yueyue Fei^{1,2}, Qin Wang^{1,2}, Jigang Lu^{1,2}, Linyue Ouyang^{1,2}, Quiqin Hu^{1,1}, Yan Zhou^{1,2}, LiangbiaoChen^{1,2}

¹ Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China,

² International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China

Introduction

- 1. Liver-expressed antimicrobial peptide 2 (LEAP2), originally described as an antimicrobial peptide, has recently been recognized as another ligand of growth hormone secretagogue receptor 1a (GHSR1a).
- 2. LEAP2, acts both as an endogenous competitive antagonist of ghrelin and an inverse agonist of constitutive GHSR1a activity, which vigorously blocks ghrelin's effects on food intake and energy metabolism in mice.

Methods

- Construction Zebrafish;
- 2. Effects of LEAP2 on appetite regulatory genes and swimming behavior;
- 3. Examination of growth indices and liver fat in adult zebrafish with LEAP2 mutation;
- 4. Construction of GHSR1a mutant of Zebrafish;
- 5. Examination of growth indices and liver fat in adult zebrafish with GHSR1a mutation;

and its regulation on the expression of LEAP2 and GHSR1a.

Results Fig 2. Expression regulation of food intake and appetite-related

genes by LEAP2 in zebrafish larvae.

Fig 3. Effects of LEAP2^{-/-} mutations on the locomotor activities of zebrafish larvae.

Fig 4. The impact of LEAP2 mutations on growth parameters and liver fat content in zebrafish.

Results

Fig 5. Zebrafish GHSR1a knockout and regulation of ghrelin and LEAP2 expression by mutations in GHSR1a^{-/-}.

Fig 6. The effect of GHSR1a^{-/-} mutations on growth parameters and hepatic lipid droplets in zebrafish.

conclusions

- 1.LEAP2 deficiency promotes high expression of liver ghrelin and brain GHSR1a.
- 2. LEAP2 deficiency leads to increase feeding and increased liver fat in zebrafish, resulting in obesity in female zebrafish.
- 3. Overexpression of LEAP2 leads to high expression of the appetite-suppressing factor POMC.
- 4. Loss of GHSR1a results in male zebrafish becoming leaner.
- 5. These research findings underscore the significance of LEAP2 as a satiety factor in the regulation of organismal energy balance, revealing its pivotal role in energy metabolism regulation through interaction with GHSR1a.

Acknowledgements

National Key Research and Development Program of China ((2018YFD0900601).