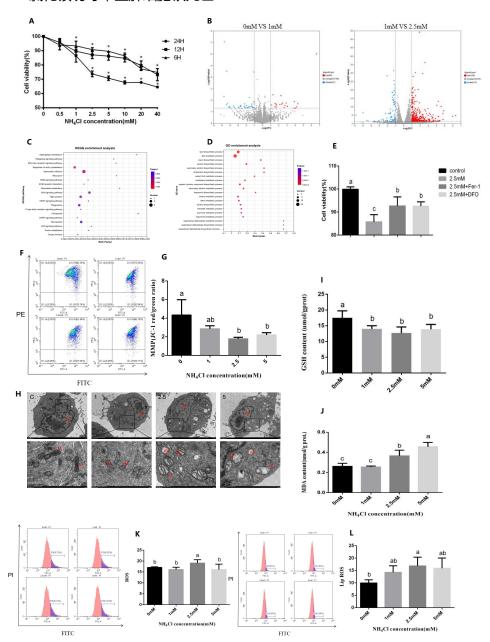


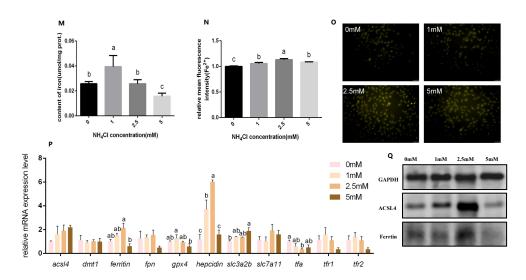
α-酮戊二酸减轻氯化铵诱导草鱼肝细胞铁死亡的作用研究

张玉玲,汤蓉*,李大鹏

华中农业大学水产学院, 湖北 武汉 430070

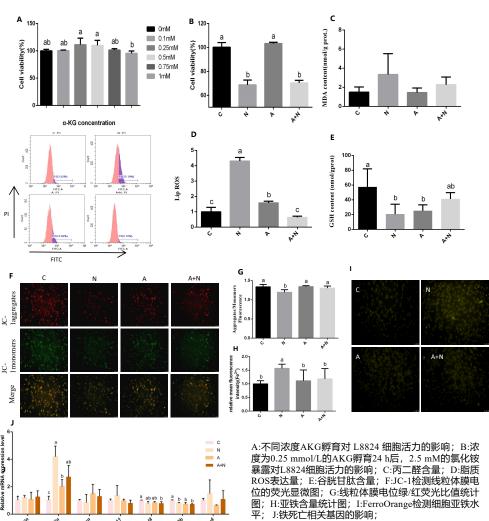
摘要


研究以草鱼($Ctenopharyngodon\ idella$)肝细胞 L8824 为对象,探究 氯化铵是否诱导其铁死亡及 α -酮戊二酸(AKG)的缓解作用。结果显示,氯化铵暴露显著降低细胞活力,引发脂质过氧化(GSH 降低、MDA 升高、ROS 升高)、线粒体损伤、铁蓄积,铁死亡抑制剂可减轻该损伤,证实氯化铵诱导铁死亡;AKG 孵育后,A+N 组较 N 组细胞活力升高,GSH 升高、MDA 及脂质 ROS 降低、MMP 升高、 Fe^{2+} 降低,提示 AKG 可缓解该铁死亡,或通过清除 ROS、增强线粒体功能实现。


方法

研究以草鱼肝细胞L8824为研究对象,先筛选适宜浓度氯化铵急性暴露,进行转录组分析,通过测定细胞存活率,GSH、Gpx4和MDA表达量,细胞内ROS、Lip ROS、铁浓度、线粒体形态和膜电位,以及铁死亡相关基因和蛋白表达水平等,再选择适宜浓度的AKG预孵育,测定细胞存活率等,探究AKG对氯化铵诱导肝细胞的作用研究。

结果


1.氯化铵诱导草鱼肝细胞铁死亡

A:不同浓度氯化铵暴露对 L8824 细胞活力的影响;B:不同表达基因(DEG)的火山图;C:0 mM组与1 mM组之间的KEGG富集分析;D:1 mM组与2.5 mM组之间的GO富集分析;E:铁死亡抑制剂孵育后对L8824细胞活力的影响;F:线粒体膜电位伪彩色图;G:线粒体膜电位绿/红荧光比值统计图;H:线粒体透射电镜图像;I:谷胱甘肽含量; J:丙二醛含量;K:ROS统计图;L:脂质ROS统计图;M:细胞内铁含量;N:亚铁含量统计图;O:FerroOrange检测细胞亚铁水平;P:铁死亡相关基因的影响;Q:铁死亡相关蛋白的影响

2.AKG减轻氯化铵诱导L8824细胞铁死亡

结论

综上所述,本研究揭示了氯化铵暴露对草鱼L8824细胞的影响机制。在氯化铵作用下,草鱼L8824细胞内活性氧 (ROS) 和丙二醛 (MDA) 含量显著升高,谷胱甘肽 (GSH) 含量显著降低,线粒体的形态结构与功能损伤,进而诱发脂质过氧化反应。同时,细胞的铁转运系统出现紊乱,致使细胞内铁元素大量蓄积,最终诱导细胞发生铁死亡。值得注意的是,本研究发现α-酮戊二酸 (AKG) 对氯化铵诱导的铁死亡具有保护作用。AKG极有可能是通过有效清除细胞内多余的ROS,进而减轻线粒体损伤来发挥这一保护功效。