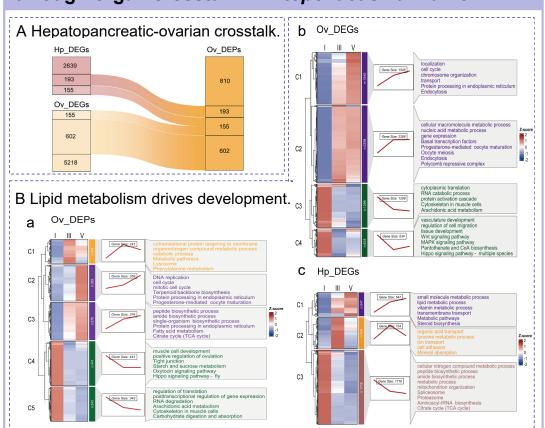


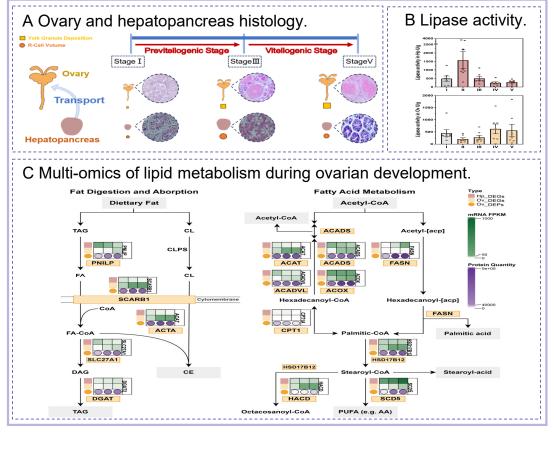
Hepatopancreas-Ovary Crosstalk Dynamically Modulates Fatty Acid Metabolism During Ovarian Maturation in *Litopenaeus vannamei*

Guanrong Feng¹, Sai Wang¹, Yong Jiang¹, Xuyan Chen¹, Xinxin Qi¹, Zhenmin Bao^{1,2}, Yue Sun^{1*}

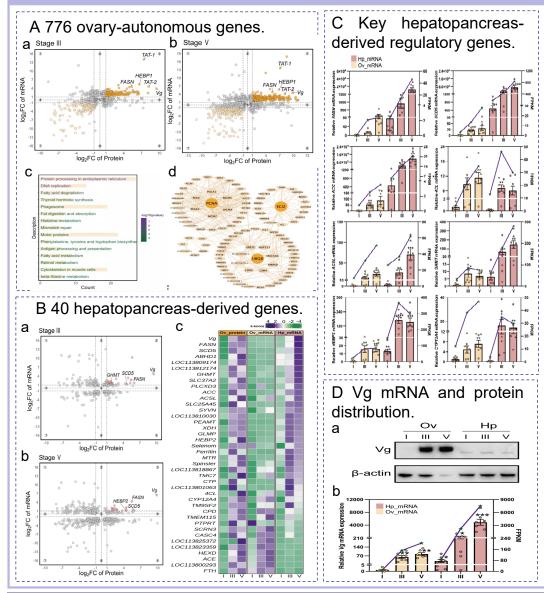
1 MOE Key Lab of Marine Genetics and Breeding, Qingdao 266003; Key Lab of Tropical Aquatic Germplasm of Hainan Province, Sanya 572024, Ocean University of China, China.


2 Southern Marine Science and Engineering Guangdong Lab, Guangzhou 511458, China.

Summary


The reproduction of *Litopenaeus vannamei* is closely linked to the metabolic status. Our multi-omics analysis reveals a lipid-centric hepatopancreas-ovary axis, which exhibits stage-specific activation and involves proteins derived from both tissues. These results enhance understanding of ovary-hepatopancreas communication, providing a scientific basis for improved gonadal regulation in shrimp.

Results


1. The hepatopancreas-ovary axis regulates maturation through organ crosstalk in *Litopenaeus vannamei*.

2. Sequential lipid metabolic activation occurs from the hepatopancreas (early) to the ovary (late).

3. Identifies a dual regulatory system for ovarian maturation: 776 ovary-autonomous genes and 40 hepatopancreas-derived transportable proteins.

Conclusion

Our findings reveal a lipid-centered hepatopancreas—ovary axis that regulates ovarian maturation. Specifically, this axis features a temporal division of labor: the hepatopancreas is activated early, whereas ovarian gene expression peaks during late maturation. Also, we identify 776 ovary-autonomous genes and 40 hepatopancreas-derived regulators. Taken together, we establish a new framework for understanding the crosstalk between extra-gonadal and reproductive tissues in crustacean reproduction.

Acknowledgements

This work was supported by the National Key R&D Program of China (2022YFF1000304), National Natural Science Foundation of China (32302983), the Shandong Excellent Young Scientists Fund Program (Overseas, 2023HWYQ-066) and Fundamental Research Funds for the Central Universities (202312036). The data analysis was supported by the High-Performance Biological Supercomputing Center at the Ocean University of China.

2025年11月4-7日 辽宁 大连