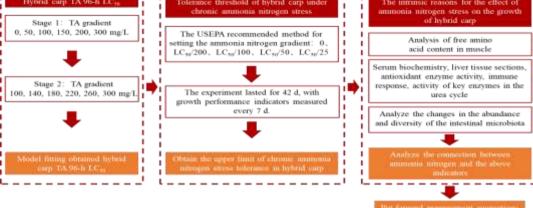


Effects of acute and chronic ammonia exposure on survival, growth and intestinal microbiota composition of hybrid carp

Yu Han a,b , Xiaoqian Li c , Xue Li a,b , Shidong Wang c , Muzi Zhang a,b,* , Ming Li c,**

^a Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China ^b College of Animal Science, Guizhou University, Guiyang 550025, China ^c School of Marine Sciences, Ningbo University, Ningbo 315211, China

SA (µmol/L)


Background

- Ammonia is an environmental stress factor harmful to aquatic organisms, which is produced by the decomposition of residual feed and animal feces.
- Different fish species exhibit variations in their tolerance to ammonia stress.
- This study used the sequential method to assess the acute/chronic ammonia tolerance of hybrid carp.

Materials and methods

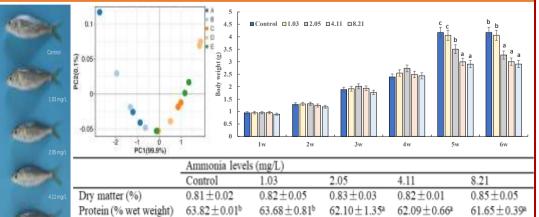
hybrid carp (Cyprinus carpiovar Jian $\delta \times C$. carpio \mathcal{Q})

en tolerance and physiological responses of hybrid carp Investigation on the acute and chronic amn The USEPA recommended method for etting the ammonia nitrogen gradient: 0, LC₃₀/200, LC₃₀/100, LC₃₀/50, LC₃₀/25

Results and Discussion

Two 96-h LC₅₀ experiments of hybrid carp, based on linear interpolation (y= 0.0047x -0.4659, R²=0.9448, y is cumulative mortality, x is ammonia concentration), determined that the 96-h LC_{50} was 206.38 mg/L TA.

Table 1. The effects of acute high ammonia stress on hybrid carp


- more and an entire of more and an entire of an entire of the property of the								
Target TA (mg/L)	Measured TA (mg/L)	Measured un-ionized ammonia (mg/L)	Cumulative mortality (%)					
Range Finding Exp	periment							
0.00	0.01 ± 0.00^{a}	0.00 ± 0.00^{a}	0.00 ± 0.00^{a}					
50.00	51.30 ± 1.00 ^b	0.74 ± 0.01^{6}	0.00 ± 0.00^{a}					
100.00	$99.50 \pm 1.50^{\circ}$	1.43 ± 0.01°	0.00 ± 0.00^a					
150.00	151.40 ± 1.20 ^d	2.17 ± 0.02^{d}	$10.00 \pm 1.00^{ m b}$					
200.00	$201.10 \pm 1.40^{\circ}$	$2.88 \pm 0.02^{\circ}$	$36.67 \pm 2.30^{\circ}$					
300.00	$301.90 \pm 0.80^{\circ}$	4.32 ± 0.01^{f}	100.00 ± 0.00^{d}					
Modified Range Ex	periment							
100.00	101.50 ± 1.20^a	1.45 ± 0.01^{a}	5.00 ± 0.06^a					
140.00	140.50 ± 1.50^{b}	2.02 ± 0.02^{b}	23.33 ± 0.21^{b}					
180.00	179.90 ± 1.33°	$2.58 \pm 0.01^{\circ}$	$43.33 \pm 5.77^{\circ}$					
220.00	219.00 ± 1.00^{d}	3.14 ± 0.01^{d}	$40.00 \pm 5.00^{\circ}$					
260.00	261.50±1.67°	3.75 ± 0.02°	76.67 ± 11.54 ^d					
300.00	301.10 ± 0.67^{f}	4.32 ± 0.01^{f}	$100.00 \pm 0.00^{\circ}$					

When TA > 1.03 mg/L, FI and growth performance were inhibited, and when TA > 4.11 mg/L, SR decreased.

Table 2. The effect of chronic low ammonia stress on the growth performance of hybrid carp

	Ammonia levels (mg/L)							
	Control	1.03	2.05	4.11	8.21			
SR(%)	100.00 ± 0.00°	$100.00 \pm 0.00^{\circ}$	100.00 ± 0.00°	98.38±1.61 ^b	95.40±1.20 ^a			
FBW (g)	4.17 ± 0.41^{b}	4.06 ± 0.30^{b}	3.27 ± 0.21^{a}	3.00 ± 0.23 ^a	2.90 ± 0.16^{a}			
WGR (%)	541.96±66.63b	521.69 ± 43.03b	400.82 ± 35.60^a	355.97 ± 44.68^a	389.87 ± 45.51^a			
SGR (%/d)	4.42 ± 0.24^{b}	4.35 ± 0.17^{b}	3.83 ± 0.17 a	3.61 ± 0.23 ^a	3.78 ± 0.22 a			
CF	3.43 ± 0.07^{d}	$3.25 \pm 0.05^{\circ}$	3.00 ± 0.13^{b}	2.84 ± 0.01^a	2.85 ± 0.06^a			
HSI (%)	2.18 ± 0.11^{b}	2.16 ± 0.02^{b}	2.08 ± 0.02^a	1.88 ± 0.04^{a}	1.87 ± 0.03^a			
VSI (%)	$14.45 \pm 0.30^{\circ}$	11.72 ± 0.73^{b}	11.63 ± 0.45^{b}	9.67 ± 0.08 a	10.01 ± 0.77^a			
FI (g/fish)	4.43±0.42b	4.41±0.06 ^b	4.23±0.03a	4.11±0.11 ^a	4.14 ± 0.11^{a}			

Chronic low ammonia stress has an impact on the growth and morphology of hybrid carp, as well as the whole body composition of hybrid carp.

27.15±0.326

10.44±0.70b

 25.94 ± 0.34^{a}

 9.29 ± 0.45^{a}

26.09±0.67a

 26.11 ± 0.53^{2}

 9.12 ± 0.28^a

Conclusion

Lipid (% wet weight)

Ash (% wet weight)

The estimated 96-h LC₅₀ of ammonia is 206.38 mg/L TA. We recommended against exposing hybrid carp to ammonia concentrations exceeding 1.03 mg/L TA. Long-term low ammonia exposure increases the relative abundance of Cetobacterium, which may be a self-protection mechanism in carp intestines against ammonia toxicity.

This work was supported by the National Natural Science Foundation of China (32072948; 32473130).

27.87±0.16^b

Free amino acids deficiency impaired growth and urea cycle enzymes, weakening ammonia detoxification. 2.05 mg/L TA is sufficient to cause a decline in antioxidant enzyme activity, liver damage and inflammation.

Table 3. Free amino acid contents in muscle of hybrid carp during 42-days exposure to different levels of ammonia.

ie veis et ammonia:									
Ammonia levels (mg/L)									
	Control	1.03	2.05	4.11	8.21				
Essential amino acid (% of dry weight)									
Arginine	2.68 ± 0.11 *	2.80 ± 0.08 *	$2.98 \pm 0.07^{\circ}$	3.19 ± 0.076	$3.43 \pm 0.07^{\circ}$				
Histidine	16.50 ± 0.37°	$16.19 \pm 0.56^{\circ}$	$15.55 \pm 0.81^{\circ}$	13.36±0.22*	13.53 ± 0.11 ^a				
Isoleucine	2.53 ± 0.024	2.49 ± 0.044	$2.34 \pm 0.04^{\circ}$	2.28 ± 0.03^{b}	2.18 ± 0.04 *				
Leucine	2.89 ± 0.08 ^a	2.91 ± 0.03a	3.06 ± 0.06^{b}	3.27 ± 0.06°	3.45 ± 0.064				
Lysine	$7.07 \pm 0.06^{\circ}$	$7.09 \pm 0.06^{\circ}$	6.55 ± 0.11^{b}	6.45 ± 0.33^{b}	$5.37 \pm 0.22^{\circ}$				
Methionine	0.14 ± 0.02	0.13 ± 0.02	0.13 ± 0.01	0.13 ± 0.02	0.13 ± 0.02				
Phenylalanine	4.26 ± 0.15°	$4.35 \pm 0.10^{\circ}$	4.07 ± 0.06^{b}	3.98 ± 0.07^{a}	3.88 ± 0.03 a				
Threonine	$3.70 \pm 0.02^{\circ}$	3.67 ± 0.03 °	$3.62 \pm 0.11^{\circ}$	3.40 ± 0.05^{b}	3.19 ± 0.07 *				
Tryptophan	2.82 ± 0.11	2.80 ± 0.05	2.73 ± 0.06	2.73 ± 0.02	2.71 ± 0.05				
Valine	$4.33 \pm 0.21^{\circ}$	$4.34 \pm 0.28^{\circ}$	3.88 ± 0.10^{b}	$3.57 \pm 0.11^{\circ}$	3.32 ± 0.07 *				
Nonessential amir	Nonessential amino acid (% of dry weight)								
Alanine	$11.51 \pm 0.25^{\circ}$	$11.20 \pm 0.24^{\circ}$	11.01 ± 0.11^{6}	9.36 ± 0.02^{a}	9.35 ± 0.28^{a}				
Asparticacid	1.31 ± 0.02	1.36 ± 0.02 *	1.45 ± 0.04^{b}	1.59 ± 0.07	1.63 ± 0.05 °				
Glutamine	12.21 ± 0.27 a	12.35 ± 0.18^{a}	13.37±0.11 ^b	14.14 ± 0.19^{c}	14.96 ± 0.30^{d}				
Glycine	$17.42 \pm 0.28^{\circ}$	17.37 ± 0.19	17.07 ± 0.09	16.64 ± 0.35^{h}	14.99 ± 0.12 *				
Tyrosine	1.44 ± 0.01	1.41 ± 0.02	1.37 ± 0.01	1.31 ± 0.09	1.29 ± 0.05				
Serine	$1.63 \pm 0.03^{\circ}$	$1.62 \pm 0.04^{\circ}$	$1.53 \pm 0.05^{\circ}$	1.47 ± 0.05^{a}	1.39 ± 0.05 ^a				

Table 4. The serum ammonia content and biochemical composition of hybrid carp during 42days exposure to different levels of ammonia.

TP (g/L)	8.39±	0.47a	$8.19 \pm 0.$	47a	10.35 ± 1	.28b	10.39 ± 0.09^{b}	10.24 ± 0.64 b
AST(U/L)	20.12	0.22a	20.97±3	3.40 ^a	27.48 ± 1	.21b	$32.23 \pm 3.75^{\circ}$	$33.03 \pm 2.80^{\circ}$
ALT (U/L)	19.35 ±	0.98a	18.98 ± 1	1.35*	22.47 ± 0	.78 ^b	$26.12 \pm 1.66^{\circ}$	$26.78 \pm 1.57^{\circ}$
TG (mmol/L)	$1.86 \pm$	0.20a	$1.88 \pm 0.$	O1a	2.60 ± 0.3	38b	$2.87 \pm 0.18^{\circ}$	$2.84 \pm 0.17^{\circ}$
CHOL (mmol/L)	31.76±	±0.72	30.55±0	0.47	30.31 ± 0	.55	31.40 ± 0.57	31.35 ± 0.47
Control 103 mg/L 206 mg/L 411 mg/L	Color digitization (bit)	a - I	a	I I	b I	b	iic s→	

Control 1.03 mg/L 2.05 mg/L 4.11 mg/L 8.21 mg/L Fig 1. The liver color of hybrid carp on final day representatives from chronic ammonia exposure growth study

Ammonia levels (mg/L)

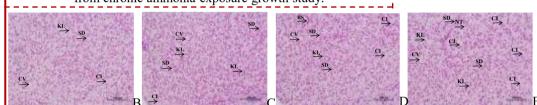


Fig 2. Liver histology of hybrid carp during 42-days exposure to different levels of ammonia

Table 5. The liver antioxidant enzyme activity and inflammatory response and urea cycle enzyme activity of hybrid carp during 42-days exposure to different levels of ammonia.

	Control	1.03	2.05	4.11	8.21
Oxidative damage index					
T-AOC (U/mg protein)	$1.44 \pm 0.16^{\circ}$	0.85 ± 0.01^{b}	0.86 ± 0.01 ^b	0.74 ± 0.09^a	0.74 ± 0.10^{a}
SOD (U/mg protein)	$14.15 \pm 0.28^{\circ}$	13.42 ± 0.92^{b}	11.69 ± 0.72 a	11.16 ± 0.12 a	11.64 ± 0.65 a
CAT (U/mg protein)	$13.22 \pm 0.44^{\circ}$	$11.96 \pm 0.09^{\circ}$	11.61 ± 1.02^{b}	$11.93 \pm 0.67^{\circ}$	9.4 ± 0.84^{a}
MDA (nmol/mg protein)	0.80 ± 0.06^a	0.88 ± 0.06 a	2.04 ± 0.05^{b}	2.00 ± 0.36^{b}	$3.99 \pm 0.13^{\circ}$
Inflammatory factor					
IL 1 (pg/mg protein)	104.47 ± 4.47 a	104.14±5.21a	112.00±3.02b	124.93±4.20°	141.75±2.746
IL 8 (pg/mg protein)	210.89 ± 1.50^{a}	208.31±3.42a	235.22±4.07 ^b	230.49±0.96 ^b	239.41±1.91°
TNF α (pg/mg protein)	90.3 ± 1.07 a	91.93 ± 2.10^{a}	106.70±4.26 ^b	119.52±0.78°	127.44 ± 1.956
Key enzymes of the urea cycle					
ARG (U/ mg protein)	$325.33 \pm 11.68^{\circ}$	$319.11 \pm 17.33^{\circ}$	$285.41 \pm 13.25^{\circ}$	$269.33 \pm 11.09^{\circ}$	241.12 ± 15.98 ^a
OTC (U/ mg protein)	812.55 ± 15.78 ^a	$809.33 \pm 16.38^{\circ}$	$822.98 \pm 11.29^{\circ}$	$825.44 \pm 15.66^{\circ}$	$839.98 \pm 13.29^{\circ}$
ASS (U/ mg protein)	909.12 ± 25.12 ^k	$910.45 \pm 19.45^{\circ}$	$935.44 \pm 21.36^{\circ}$	$941.68 \pm 22.01^{\circ}$	981.12 ± 19.89
ASL (U/ mg protein)	45.99±9.12°	41.38±7.89d	35.45 ± 7.66°	31.32±6.35 ^b	27.86±6.12a

Long-term low ammonia lowered intestinal microbiota richness/diversity, increased harmful bacteria (e.g., Levisonia), while elevated beneficial bacteria (e.g., Cetobacterium) may be an ammonia tolerance strategy.

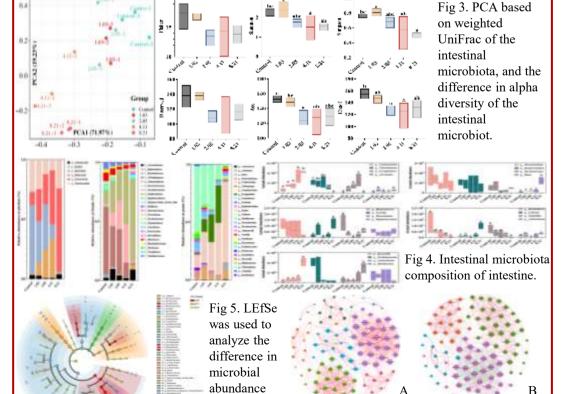


Fig 6. The network visualizes the genus-genus

interactions during the operation of ammonia stress

between 5

groups.