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induced evolution: A study on different life history strategies
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’ Methods

> Increasing evidences suggest that fishing activities can trigger Model: An individual-based eco-evolutionary model
evolutionary changes in fish life history traits and thus affect Species: Japanese Sardine (JS), Sardinops melanostictus; Chub Mackerel (CM),
population dynamics. Scomber japonicus; Albacore (AL), Thunnus alalunga; blue shark (BS), Prionace
» To cope with these fishing pressures and maintain reproductive glauca

success, fish populations undergo adaptive evolution, namely,
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» most studies primarily focused on the individual or population level d-( M

and failed to incorporate species with different life history traits,
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thereby overlooking their diverse responses to overfishing. The
goals of the study were (1) to examine the predicted effects of FIE é( *(

on population dynamics and changes in life history traits and (2)

+ Populations’ size, biomass, and life-history traits recorded eachyear
+ Simulations repeated for MIHR = 0.2,0.4, 0.6,0.8, 1.0
« 50 repetitions
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[ + A simulation with total run time of 400 years ]

the differences among species with varying strategies.
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evolutionary changes.
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