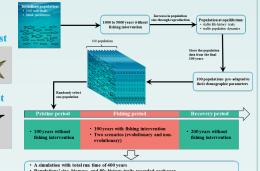
Dynamic responses of key economic species in the Northwestern Pacific to fisheriesinduced evolution: A study on different life history strategies

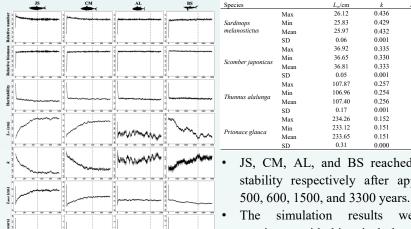
Peiwu Han¹, Xinjun Chen^{1,2,3,4}, and Zhou Fang^{1,2,3,4}

1. College of Marine living Resource Sciences and Management, Shanghai Ocean University, Shanghai 201306, China; 2. National Engineering Research Center for Oceanic Fisheries, Shanghai Ocean University, Shanghai 201306, China; 3. Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education, S Ocean University, Shanghai 201306, China; 4. Key Laboratory of Oceanic Fisheries Exploration, Ministry of Agriculture and Rural Affairs, Shanghai 201306, China

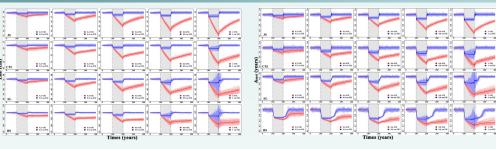
Introduction


- Increasing evidences suggest that fishing activities can trigger evolutionary changes in fish life history traits and thus affect population dynamics.
- To cope with these fishing pressures and maintain reproductive success, fish populations undergo adaptive evolution, namely, fisheries-induced evolution (FIE).
- most studies primarily focused on the individual or population level and failed to incorporate species with different life history traits, thereby overlooking their diverse responses to overfishing. The goals of the study were (1) to examine the predicted effects of FIE on population dynamics and changes in life history traits and (2) the differences among species with varying strategies.

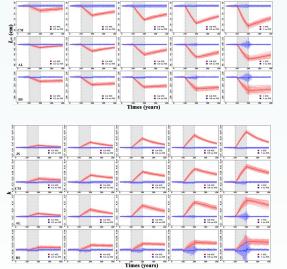
Methods


Model: An individual-based eco-evolutionary model

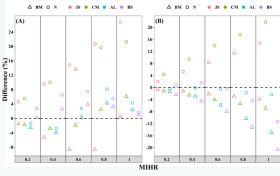
Species: Japanese Sardine (JS), Sardinops melanostictus; Chub Mackerel (CM), Scomber japonicus; Albacore (AL), Thunnus alalunga; blue shark (BS), Prionace



Result 1: Burn-in simulation


- JS, CM, AL, and BS reached ecological stability respectively after approximately
- simulation results were highly consistent with historical data, validating the accuracy and reliability of the model.

Results


- Reduced body size, accelerated growth, and earlier sexual maturation.
- The evolutionary rates of life history traits in species with different strategies showed extremely significant differences.

Result 2: Changes in population life history

Dynamic changes in the life history of JS, CM, AL, and BS. The thicker red solid line represents the mean of 50 independent replicates of the scenario with the evolutionary, while the thicker blue solid line represents the mean of 50 independent replicates of the scenario with the nonevolutionary. The vertical dashed lines indicate the start (year 100) and end (year 200) of fishing, and the gray shading represents the 100year fishing period.

Result 3: Changes in population dynamics

- > The difference in relative biomass and abundance between evolutionary and non-evolutionary scenarios. A: fishing phase; B: recovery phase.
- > In the non-evolutionary scenario, the recovery time of relative biomass (A) and number (B) for JS, CM, AL, and BS.
- Dynamic changes in the relative number and biomass
- FIE can enhance the resistance of populations to overfishing, but it may also reduce their ability to recover under natural fluctuations so that recovery rates lag behind the pace evolutionary changes.

Acknowledgments

This work was funded by the National Natural Science Foundation of China (NSFC42306117), the Program on Comprehensive Scientific Survey of Fisheries Resources on the High Seas sponsored by the Ministry of Agriculture and Rural Affairs (D-8025-24-5002).

Contact information

- Email: Peiwu Han: 2718344838@qq.com; Zhou Fang: zfang@shou.edu.cn; Xinjun Chen: xjchen@shou.edu.cn
- Telephone: 86-021-61900304
 - Address: Huchenghuan Road 999, Pudong New District, Shanghai 201306, China.