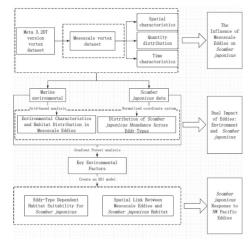


Analysis of the impact of mesoscale eddies on the abundance and distribution of Japanese chub mackerel (Scomber japonicus) in the northwest Pacific Ocean

Shujie Wang1, Qinwang Xing1, Pengchao Jin1, Heng Zhang2, Wei Yu1,3,4,5*

1 College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China; 2 East China Sea Fisheries Research Institute, Chinese Academy of Fishery Science, China; 3 National Engineering Research Center for Oceanic Fisheries, Shanghai Ocean University, Shanghai 201306, China; 4 Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; 5 Key Laboratory of Oceanic Fisheries Exploration, Ministry of Agriculture and Rural Affairs, Shanghai 201306, China


Backgrou

The Japanese chub mackerel (*Scomber japonicus*) is a key economic pelagic fish in the northwest Pacific Ocean, where it exhibits a trend towards a younger, smaller population. This species plays a vital role in the local trophic cascade, with a diet that shifts from copepods to euphausiids and fish as it matures. Its recruitment is highly sensitive to environmental variability.

Mesoscale eddies are abundant in this region and significantly influence the marine environment. Cyclonic eddies promote cold-water upwelling, while anticyclonic eddies involve warm-water downwelling. These processes alter temperature-salinity structures, nutrient transport, and chlorophyll-a distribution.

Eddies may regulate *S. japonicus* distribution through multiple pathways: by reshaping prey fields via vertical mixing, acting as physical barriers at their edges, and transporting eggs and larvae via rotational flow fields. The synergistic mechanisms and nonlinear impacts of these environmental factors on the species' abundance require further systematic investigation.

Method:

Result 1: Statistical Analysis of Mesoscale Eddies in the Northwest Pacific Ocean

Figure 1 The Spatial Distribution of Anticyclonic and Cyclonic Eddies in the Northwest Pacific Ocean. Variation in the Monthly and Annual Numbers of Anticyclonic and Cyclonic Eddies in the Northwest Pacific

Figure 3 Relative Propagation Trajectories of Cyclonic and Anticyclonic Eddies in the Northwest Pacific

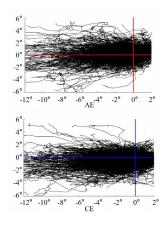
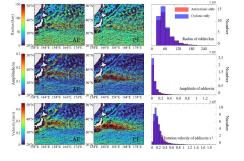
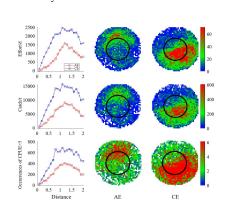




Figure 2 Spatial Distribution of Mesoscale Eddy Characteristic Parameters in the Northwest Pacific. Temporal Variation in the Number of Mesoscale Eddy Characteristic Parameters in the Northwest Pacifics.

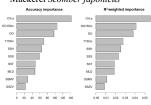

Result 2: The Relationship Between Eddies and the Abundance of S. japonicus

Figure 4 Distribution Patterns of Japanese Mackerel *Scomber japonicus* in Anticyclonic and Cyclonic Eddies

Result 3: Screening of Key Environmental Factors

Figure 5 Ranking of the Importance of Oceanic Environmental Factors on the CPUE of Japanese Mackerel Scomber japonicus

Figure 6 Fitting Curves of Japanese Mackerel *Scomber japonicus* CPUE and Key Environmental Factors

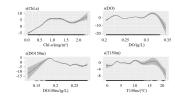
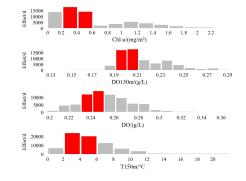



Table 1 Statistical results of the GAM model

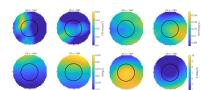
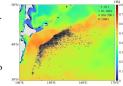

GAM 变量	edf	Chi-sq	P-value	R²-adj	偏差解释率
				0.07222	7.3%
Chl-a	7.982	114.70	<0.001***		
DO150m	8.582	66.76	<0.001***		
DO	8.769	49.18	<0.001***		
T150m	8.620	19.37	<0.001***		

Figure 7 Relationship Between the Distribution of Fishing Effort and Different Environmental Factors

Result 4: Environmental Variations Inside and Outside Eddies

Figure 8 Distribution of External and Internal Environmental Factors in AE and CE with Japanese Mackerel Scomber

Result 5: HSI Model


Table 3 Fitted SI Model and Its Statistical Parameters

April	SI _{(b).4} =EXP[-467.861*(chl-0.083)*2]	0.806	<0.00
	Slov=EXP[-528.093*(do-0.188)^2]	0.916	< 0.00
	SI _{D+150} =EXP[-708.819*(do150-0.184)*2]	0.961	< 0.00
	SI ₇₁₅₀ =EXP[-0.079*(t150-8.203)^2]	0.997	< 0.00
May	SI _{Oh14} =EXP[-344.105*(chl-0.087)*2]	0.832	< 0.00
	SI _{0.0} =EXP[-311.959*(do=0.194)*2]	0.872	< 0.00
	SInoso=EXP[-1193.25*(do150-0.204)^2]	0.922	< 0.00
	Slr150=EXP[-0.05*(t150-6.32)^2]	0.912	<0.00
June	SI _{Ch14} =EXP[-366.395*(chl-0.101)*2]	0.727	< 0.00
	SI _{D0} =EXP[-1196.821*(do-0.224)*2]	0.991	< 0.00
	Sloom=EXP[-822.636*(do150-0.199)^2]	0.949	< 0.00
	SI _{T150} =EXP[-0.098*(t150-4.84)^2]	0.974	< 0.00
July	SI _{Chia} =EXP[-15.833*(dsl-0.406)*2]	0.801	< 0.00
	SI _D =EXP[-1351.855*(do-0.233)^2]	0.887	< 0.00
	Slnosto"EXP[-800.174*(do150-0.205)^2]	0.921	< 0.00
	SIr150=EXP[-0.107*(t150-4.389)^2]	0.984	< 0.00
August	Sl _{Ch14} =EXP[-0.831*(chl+0.435)*2]	0.926	< 0.00
	SIn := EXP[-698.974*(do-0.259)*2]	0.865	< 0.00
	SIDecto=EXP[-331.341*(do150-0.211)^2]	0.908	<0.00
	SIr150=EXP[-0.125*(t150-3.298)^2]	0.953	< 0.00
September	SI _{Ch1-e} =EXP[-1.238*(ch1-1.139) ⁽²⁾]	0.900	< 0.00
	SI _D =EXP[-1257.33*(do-0.255)*2]	0.971	< 0.00
	SI _{Dxt30} =EXP[-455.85*(do150-0.206)*2]	0.842	<0.00
	SI _{T150} =EXP[-0.243*(t150-2.41)*2]	0.956	< 0.00
October	SI _{Chia} =EXP[-2.56*(chl-0.647)*2]	0.965	< 0.00
	SI _{Do} =EXP[-1162.3*(do-0.259)^2]	0.998	< 0.00
	SI ₀₋₀₅₀ =EXP[-682.588*(do150-0.198)^2]	0.908	< 0.00
	SIr150=EXP[-0.24*(t150-2.009)^2]	0.955	< 0.00
November	Sl _{Ch1-a} =EXP[-6.178*(chl-0.463) ²]	0.941	< 0.00
	SI _{0.0} =EXP[-756.926*(do-0.242)*2]	0.893	<0.00
	SI _{Del SI} =EXP[-1268.04*(do150-0.19)*2]	0.879	< 0.00

Table 2 Percentages of the suitable environment in the core and periphery of eddies

环境变量 environmental variable	0-F	t	R-21	R-2R	
	反气旋涡 /% anticyclonic eddy	气旋涡 /% cyclonic eddy	反气旋涡/% anticyclonic eddy	气旋涡 /% cyclonic eddy	
Chl-a	41.69	48.25	41.19	50.44	
DO150m	42.85	43.35	44.35	43.18	
DO	34.03	32.27	34.67	34.63	
T150m	17.56	69.37	34.97	59.11	

Figure 9 Overlay of Japanese Mackerel Scomber japonicus Catch and HSI Values from April to November 2021

Result 6: Distribution of Suitable Habitats for S. japonicus within Eddy Influence

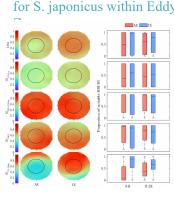


Figure 10 Spatial distribution of Mean SI Corresponding to Chl-a, DO at 150m, DO, and T at 150m around AE and CE. Boxplot of the Proportion of Suitable SI Values (SI ≥ 0.6) Corresponding to Chl-a, DO at 150m, DO, and T at 150m around AE and CE

Acknowledgmen