Assessing the non-stationary spatial effects of environmental conditions on *Illex argentinus* in the Patagonian region

Lizi Zhang1, Zhiping Feng1, Pengchao Jin1, Wei Yu1,2,3,4*-

1 College of Marine Living Resource Sciences and Management, Shanghai Ocean University, Shanghai 201306, China.

2 National Engineering Research Center for Oceanic Fisheries, Shanghai Ocean University, Shanghai 201306, China.

3 Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China.

4 Key Laboratory of Oceanic Fisheries Exploration, Ministry of Agriculture and Rural Affairs, Shanghai 201306, China.

Introduce

- Spatial relationships between species distribution and the environment can be non-stationary.
- Complex topography and heterogeneous marine environments characterize the Patagonian Shelf and adjacent waters, fostering high productivity.
- The spatial distribution pattern of *Illex argentinus* exhibits significant heterogeneity, with its abundance also showing pronounced unevenness.
- Local models are more effective in unraveling the spatially non-stationary relationship between *Illex argentinus* and environment.

Method

- 1) Multicollinearity analysis
- 2) Generalized additive model (GAM)
- Species-environment non-linearity
- Key factor identification

$$y = \beta_0 + s(x_j) + \varepsilon$$

where y is the the response variable, β_0 is the intercept, s is the smoothing function, x_j represents the j-th covariate.

- 3) Multi-scale geographically weighted regression (MGWR) model
- Spatially Varying Relationships
- Capturing Multi-scale Processes

$$y_i = \beta_0(u_i, v_i) + \sum_{j=1}^k \beta_{bwj}(u_i, v_i) x_{ij} + \varepsilon_i$$
 where (u_i, v_i) are the coordinates of sample point i , $\beta_j(u_i, v_i)$ represents the local regression, the

where (ui,vi) are the coordinates of sample point i, $\beta j(ui,vi)$ represents the local regression, the bw represents the bandwidth.

Result

1) Identification of key environmental factors

Table 1. GAM results for *I. argentinus* CPUE and environmental variables.

Factor	AIC Value	Variance	\mathbb{R}^2	p
		Explained%		
SSH	12186.63	14.9	0.147	0.000
T50m	12460.47	6.74	0.065	0.000
Chl-a	12412.77	8.22	0.080	0.000
SSH+T50m+Chl-a+SSS	11944.20	23.0	0.221	_
SSH+T50m+Chl-a+SSS+SST	11940.97	23.2	0.223	_

2) Spatial patterns of kev environmental factors

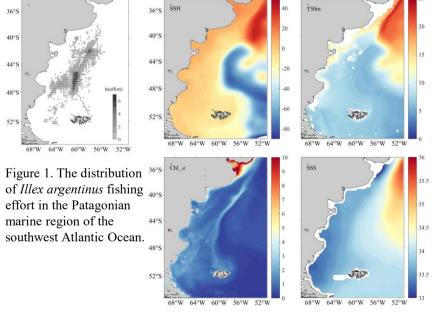


Figure 2. Mean spatial distribution of selected environment al variables in the southwest Atlantic Ocean from 2013-2019.

Result

3) Model performance comparison

Table 3. Statistical results of the GAM and the MGWR model.

Model	RSS	AIC	Adjusted R ²	Moran's I	p
GAM	9739.52	11944.20	0.221	0.141	0.000
MGWR	1620.32	6990.37	0.410	-0.003	0.729

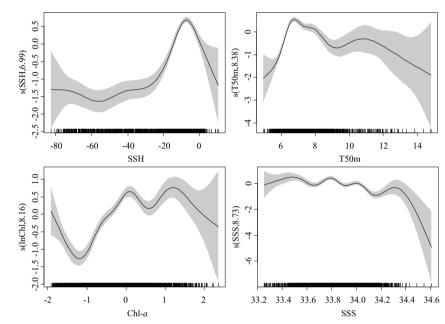


Figure 2. GAM results showing the effects of the selected environmental variables on *Illex* argentinus CPUE.

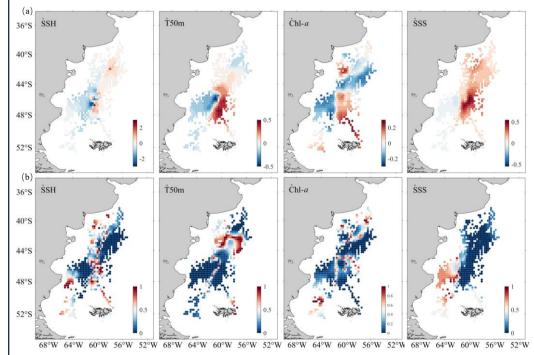


Figure 4. Spatial distribution of local regression coefficients (a) and significance (b) for each environmental factor in the MGWR model.

Conclusion

- In this study, the MGWR model demonstrated superior performance over GAM, effectively addressing the issue of spatial heterogeneity.
- The influence of environmental variables on *Illex argentinus* CPUE exhibits significant spatial non-stationarity, with the effects of different variables also demonstrating spatial variation.
- Marine environmental conditions are key factors influencing the distribution of *Illex argentinus*. Specifically, fronts generated by the interaction of ocean currents with shelf break topography deliver abundant nutrients, thereby providing a suitable habitat environment for the squid.

Acknowledgments

This study was financially supported by the Natural Science Foundation of Shanghai (23ZR1427100), the National Key R&D Program of China (2023YFD2401303), Shanghai talent development funding for the project (2021078), the 2024 International Cooperation Seed Funding Project for China's Ocean Decade Actions (GHZZ3702840002024020000024) and the AI Special Program of Shanghai Municipal Education Commission for Wei Yu in Shanghai Ocean University (A1-3405-25-000303).