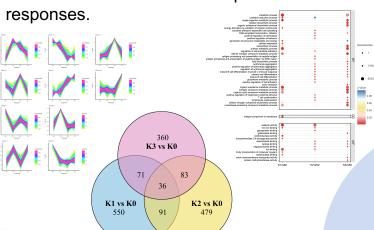
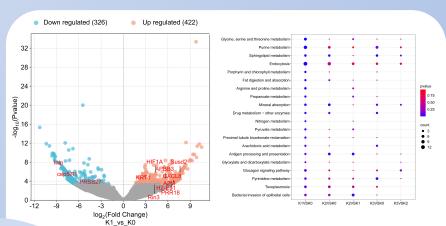
The Effect of Cu²⁺ Stress on the Expressions of Genes Related to Immune Response and Oxidative Stressin the Kidney of

Gymnocypris eckloni

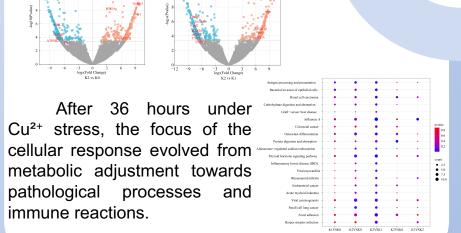
WANG Lu^{1,2}, JIA Chunyan^{1,2}, JIN Wenjie^{1, 2*}
College of Eco-Environmental Engineering, Key Laboratory of Highland Cold-water Fish
Culture and Ecological Environment Protection of the Ministry of Agriculture and Rural Affairs

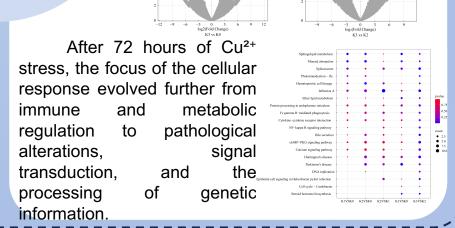

1 Introduction


This study will provide an important theoretical basis for an in-depth analysis of the molecular response mechanism of *G.eckloni* under heavy-metal stress, and also provide valuable references for protecting *G.eckloni* and other aquatic organisms from the harm of heavy-metal pollution.

Method

A toxicity test was conducted under Cu²⁺ stress: *G.eckloni* were divided into three experimental groups and one blank control group. After exposure to 0.01 mg/L Cu²⁺ for 0, 6, 36, and 72 hours, the fish were dissected to collect kidney tissues for transcriptome sequencing and data analysis.


A total of 36 common differentially expressed genes (DEGs) were identified across different stages of Cu²⁺ stress. The top 50 GO terms were predominantly associated with metabolic processes and immune



After 6 hours post Cu²⁺ exposure, the significantly enriched KEGG pathways were primarily associated with metabolism, signal transduction, and cellular defense.

Result

4 Conclusion

The renal response of *G.eckloni* to Cu²⁺ stress was time-dependent, with a primary activation of metabolic pathways at 6 h, a significant shift to pathological and immune responses at 36 h, and a predominant involvement of genetic information processing and signal transduction pathways at 72 h.