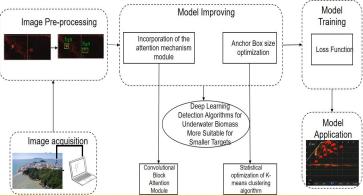
Automatic detection of disaster-causing organisms near the waters of nuclear power plant based on LiveScope scanning sonar images

于港怿1, 万荣1,2, 张俊波1,2, 鲁超3

1上海海洋大学,海洋生物资源与管理学院

²上海海洋大学,远洋渔业工程技术研究中心 ³自然资源部,宁德海洋中心

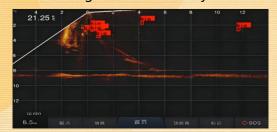

Background

- Nuclear power is a clean, efficient, and low-carbon energy source, and most nuclear power plants are located in coastal areas using seawater for
- •The outbreak of disaster-causing organisms (DCOs) such as jellyfish, algae, and shrimp can block intake screens, reduce cooling efficiency, or even lead to unit shutdowns.
- Traditional underwater camera monitoring is limited by turbidity and lowlight conditions.
- •LiveScope scanning sonar enables real-time biological observation in turbid waters.
- This study develops an automated detection model to identify and track DCOs around nuclear power intakes using sonar imagery.

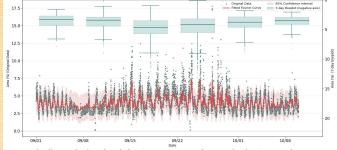
CHINA Latitude 08 CHINA TAIWAN Longtitude

Methods and Technical Framework

- A total of 22,017 LiveScope sonar videos (June 2022 - October 2023) were collected from Dayushan waters and the Ningde Nuclear Power Plant intake to construct a labeled DCO dataset for training and validation.
- An improved Bio-YOLOv7 model with CBAM attention and optimized anchor boxes was trained via data augmentation and transfer learning, improving detection accuracy and robustness in noisy sonar imagery.

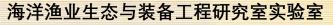

DCO automatic monitoring flow diagram

Results and Model Performance


- •Detection Accuracy: The Bio-YOLOv7 model achieved 85.3% precision, 83.3% recall, 81.5% AP, F1 = **0.84, and 63.8 FPS**, meeting real-time monitoring requirements.
- Multi-Scenario Performance: Accurate and robust detection was maintained across blank, sparse, dense, and outbreak underwater scenes with minimal false targets.

• Temporal Variation: Light-spot area analysis revealed a 12.3 h semi-diurnal cycle, consistent with tidal

rhythm and indicating DCO outbreak dynamics.


Real-time detection of DCO light-spot area

Periodic Variation in Light Spot Area at the Intake in September

Conclusion and Outlook

- Summary: The proposed Bio-YOLOv7 model enables real-time, high-accuracy detection of DCOs in sonar images, supporting automatic monitoring near nuclear power intakes.
- Application: The system effectively provides early warning of biological clogging, improving operation safety and maintenance efficiency of coastal nuclear facilities.
- Future Work: Future efforts will focus on larger sonar datasets, cross-environment generalization, lightweight embedded deployment, and integration of non-tidal drivers for outbreak prediction

