
Results

- Novel Deep Learning Framework Proposed: An optimized model 

based on YOLOv6 was developed for real-time marine object 

detection, utilizing model compression and knowledge distillation 
techniques.

- Optimal Model Identified for Balance of Speed and Accuracy: 

Among the variants tested, the YOLOv6t-student model (Model 13) 
achieved the best balance, attaining a 0.722 mAP0.5 at a 

computational cost of just 24.89 GFLOPs.

- Exceptional Real-World Detection Accuracy Confirmed: Field 
testing in the Pacific Ocean demonstrated the model's high 

effectiveness, with a 94.81% accuracy in detecting FADs, including 

perfect (19/19) detection in defocused conditions.

- Isomorphic Teacher Model Most Effective in Distillation: 

Knowledge distillation analysis showed that an isomorphic teacher 

model (YOLOv6t) yielded the best student performance, while a 
complex teacher increased recall but reduced overall accuracy.

- Framework Presents a Viable Cost-Effective Alternative: The 

solution provides a cost-effective UAV-based monitoring system, 
offering a practical alternative to helicopters with potential for future 

sensor integration.

Fig.1 Comparative performance evaluation of 

YOLOv6 variants (a)yolov6 s (b)yolov6 m 

(c)yolov6l (d)yolov6t. Metrics: P (Precision), F1 

(F1-Score), PR (Precision-Recall curve), 

R(Recall)..
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Introduction

- 1. Transition from Traditional to UAV-Based Detection

- 2. Key Challenges in UAV-Based Detection

- 3. Proposed Lightweight Deep Learning Framework

- 4. Validation through Real-World Deployment

Materials

- Custom Datasets Due to Lack of Benchmarks

Existing public datasets (e.g., COCO, ImageNet) lack sufficient representation of 

pelagic tuna schools and FADs. This study instead employs two purpose-built 

datasets to ensure domain relevance.

- Close-Range Imagery Collection

Collected by researchers using handheld wide-angle cameras (12 MP) aboard purse 

seiners in a defined equatorial Pacific region. The dataset contains 74 high-resolution 

videos (40 GB total), professionally annotated to support model training and 

validation.

- Aerial Imagery via UAV Missions

Acquired using a multirotor UAV deployed from a tuna seiner in the same Pacific 

region. The aerial image set focuses on FADs, with 900 high-quality images selected 

based on strict clarity and visibility criteria for field-based model evaluation.

Methods

- Dual-Phase Evaluation Protocol

Combined lab tests (precision, recall, mAP) on close-range images with 

field validation using 900 UAV shots to assess real-world performance.

- Laboratory and Field Metrics

Lab: Precision, Recall, AP via IoU.

Field: Accuracy, miss/false rates, tracking, and environmental 

robustness at 5 fps.

- Transfer Learning Strategy

Froze pre-trained YOLOv6 (COCO) backbone, only retrained the 

classifier to adapt to marine targets with limited data.

- Hyperparameter Optimization

Used genetic algorithm to optimize learning rate and augmentation, 

improving model accuracy and robustness.

- Knowledge Distillation

Compressed teacher model into student model via logit and feature 

distillation, enhancing efficiency without sacrificing performance.

- YOLOv6 as Benchmark Model

YOLOv6 offered the best speed-accuracy trade-off with anchor-free 

design and hardware-aware architecture for real-time marine use.

Conclusions

- AI-Driven Modernization for Fisheries: This research demonstrates 
how AI vision systems modernize tuna fishing by significantly enhancing 
detection efficiency and providing a pathway to integrate with other 
sensors for comprehensive monitoring.

- A Practical and Cost-Effective UAV Solution: The framework offers a 
viable alternative to helicopter surveillance, reducing operational costs 
and safety risks while maintaining high detection capabilities, thus 
supporting the industry's transition to UAVs.

- Acknowledgement of Current Limitations: The study notes 
limitations, as field testing was primarily conducted on FADs due to 
operational constraints, with detection of free-swimming schools 
remaining for future work.

- Potential for Future Enhancement with More Data: It is anticipated 
that future collection of high-quality UAV footage will provide richer 
datasets, further improve model accuracy and enable robust recognition 
of free-swimming fish schools.

- Foundational Step Towards Data-Driven Fisheries: The 
computationally efficient techniques developed are a significant 
advancement, enabling intelligent autonomous reconnaissance and 
representing a pivotal breakthrough in transforming fisheries into data-
driven industries.
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Fig.2 Experimental Results on the 

Detection of FAD from Offshore UAV Testing


