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Introduction

1. Transition from Traditional to UAV-Based Detection

2. Key Challenges in UAV-Based Detection

3. Proposed Lightweight Deep Learning Framework

4. Validation through Real-World Deployment
. .

(Materials
- Custom Datasets Due to Lack of Benchmarks

Existing public datasets (e.g., COCO, ImageNet) lack sufficient representation of
pelagic tuna schools and FADs. This study instead employs two purpose-built
datasets to ensure domain relevance.

- Close-Range Imagery Collection

Collected by researchers using handheld wide-angle cameras (12 MP) aboard purse

videos (40 GB total), professionally annotated to support model training and
validation.

- Aerial Imagery via UAV Missions

Acquired using a multirotor UAV deployed from a tuna seiner in the same Pacific
region. The aerial image set focuses on FADs, with 900 high-quality images selected

seiners in a defined equatorial Pacific region. The dataset contains 74 high-resolution;

\based on strict clarity and visibility criteria for field-based model evaluation.

Gethods

- Dual-Phase Evaluation Protocol

Combined lab tests (precision, recall, mAP) on close-range images with
field validation using 900 UAV shots to assess real-world performance.
- Laboratory and Field Metrics

Lab: Precision, Recall, AP via loU.

Field: Accuracy, miss/false rates, tracking, and environmental
robustness at 5 fps.

- Transfer Learning Strategy

Froze pre-trained YOLOv6 (COCO) backbone, only retrained the
classifier to adapt to marine targets with limited data.

- Hyperparameter Optimization

Used genetic algorithm to optimize learning rate and augmentation,
improving model accuracy and robustness.

- Knowledge Distillation

Compressed teacher model into student model via logit and feature
distillation, enhancing efficiency without sacrificing performance.

- YOLOvV6 as Benchmark Model

YOLOV6 offered the best speed-accuracy trade-off with anchor-free
design and hardware-aware architecture for real-time marine use.
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Results

- Novel Deep Learning Framework Proposed: An optimized model
based on YOLOv6 was developed for real-time marine object
detection, utilizing model compression and knowledge distillation
techniques.

- Optimal Model Identified for Balance of Speed and Accuracy:
Among the variants tested, the YOLOv6t-student model (Model 13)
achieved the best balance, attaining a 0.722 mAP0.5 at a
computational cost of just 24.89 GFLOPs.

- Exceptional Real-World Detection Accuracy Confirmed: Field
testing in the Pacific Ocean demonstrated the model's high
effectiveness, with a 94.81% accuracy in detecting FADs, including
perfect (19/19) detection in defocused conditions.

- Isomorphic Teacher Model Most Effective in Distillation:
Knowledge distillation analysis showed that an isomorphic teacher
model (YOLOv®6t) yielded the best student performance, while a
complex teacher increased recall but reduced overall accuracy.

- Framework Presents a Viable Cost-Effective Alternative: The
solution provides a cost-effective UAV-based monitoring system,
offering a practical alternative to helicopters with potential for future
sensor integration.
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Fig.1 Comparative performance evaluation of
YOLOv6 variants (a)yolové s (b)yolové m
(c)yolovél (d)yolov6t. Metrics: P (Precision), F1
(F1-Score), PR  (Precision-Recall  curve),
R(Recall)..

Fig.2 Experimental Results on the
Detection of FAD from Offshore UAV Testing
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- Al-Driven Modernization for Fisheries: This research demonstrates
how Al vision systems modernize tuna fishing by significantly enhancing
detection efficiency and providing a pathway to integrate with other
sensors for comprehensive monitoring.

- A Practical and Cost-Effective UAV Solution: The framework offers a
viable alternative to helicopter surveillance, reducing operational costs
and safety risks while maintaining high detection capabilities, thus
supporting the industry's transition to UAVSs.

- Acknowledgement of Current Limitations: The study notes
limitations, as field testing was primarily conducted on FADs due to
operational constraints, with detection of free-swimming schools
remaining for future work.

- Potential for Future Enhancement with More Data: /t is anticipated
that future collection of high-quality UAV footage will provide richer
datasets, further improve model accuracy and enable robust recognition
of free-swimming fish schools.

- Foundational Step Towards Data-Driven Fisheries: The
computationally efficient techniques developed are a significant
advancement, enabling intelligent autonomous reconnaissance and

representing a pivotal breakthrough in transforming fisheries into data-
driven industries.




